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Abstract. The standard version of Noether’s theorem, when applied to the classical Kepler 
problem, leads to the constants of energy and angular momentum, but does not give the 
‘hidden symmetry’ known as the Runge-Lenz vector. Lie’s theory of differential equations 
is used to obtain all three constants of motion. The transformations of solutions under the 
point transformations to which these constants correspond are studied. The results are 
generalised to n dimensions. 

1. Introduction 

Conservation laws play an important role in providing an adequate mathematical 
description of dynamical systems and in uncovering their symmetries. 

In a recent paper the authors obtained the Lie and Noether symmetry groups of the 
time-dependent oscillator in II dimensions. In this work we examine the analogous 
groups for the classical Kepler problem. 

The classical Kepler problem has merited much investigation because of its role in 
quantum mechanics as well as its inherent importance in classical mechanics. Three 
constants of motion arise: the energy, the angular momentum and the Runge-Lenz 
vector. This last quantity is a vector that is parallel to the line joining the centre of force 
to the nearer apse, and is a measure of the eccentricity of the orbit. The symmetry 
associated with this vector has been called a ‘hidden symmetry’ of the problem, in that 
its existence is not immediately apparent from an inspection of the geometric sym- 
metries of the force field (Cisneros and McIntosh 1970). 

When a dynamical system has a Lagrangian formulation, Noether’s theorem is 
commonly used to find constants of motion. This theorem enables a constant of motion 
to be constructed for each element of a group of point transformations leaving the 
action integral invariant. There are however some limitations: the Runge-Lenz vector, 
for example, evades detection by Noether’s theorem. The problem is partly alleviated 
by noting that the Lagrangian for a given problem may vary up to a total time derivative 
without altering the variational problem and thus the equation of motion. Even with 
this generalised Noether’s theorem some of the ‘hidden symmetries’ in classical 
problems still do not appear. To take a case in point, the Runge-Lenz vector will only 
arise from a Noether-type theorem when the transformations applied to the action 
integral are not point transformations but involve the velocity as an independent 
variable (Hill 1951, Lkvy-Leblond 1971). With the introduction of these types of 
transformations, some of the features of the theory are no longer straightforward 
(Gonzalez-Gascon 1977). 
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In an earlier paper (Prince and Eliezer 1980) the authors pointed out that another 
‘hidden symmetry’ in classical mechanics, the Fradkin-Hill matrix & i t  + X k X l  for the 
n-dimensional simple harmonic oscillator, could be obtained from Noether’s theorem 
in its original form. It has previously been obtained using velocity-dependent trans- 
formations (LCvy-Leblond 1971). It would be satisfying to obtain the Runge-Lenz 
vector of the Kepler problem by some method involving point transformations only. 

Recently there has been a revival of interest in Lie’s theory of differential equations, 
particularly as applied to symmetry considerations of equations of motions of dynami- 
cal systems (Wulfman and Wybourne 1976, Lutzky 1978, Prince and Eliezer 1980). 
This theory in its standard form (Lie 1891, 1922, Page 1897, Cohen 1911, Ince 1926, 
Bluman and Cole 1974) considers the invariance of solutions of a differential equation 
(and thus invariance of the form of the differential equation itself) under point 
transformations of one parameter. Lie himself showed that for a second-order equa- 
tion of the form 

(1) Y ” + f ( X ,  y ,  Y ’ )  = 0 
there are at most eight such point transformations. He further gave the form of these 
for the free particle. The simple harmonic oscillator (Anderson and Davison 1974, 
Wulfman and Wybourne 1976, Lutzky 1978) and the time-dependent oscillator (Prince 
and Eliezer 1980) also admit eight transformations in this way. For the oscillator 
problems, the five one-parameter transformations associated with the standard 
Noether problem form a subgroup of the eight for the Lie method. 

An approach was outlined in Prince (1979) by which constant of motion can be 
calculated for each transformation admitted by the equation of motion in a given 
problem. Eight such constants were constructed for the oscillator problem, only five of 
which were previously available from Noether’s theorem. In the present work we show 
that a point transformation in the Lie group of the Kepler problem provides the 
Runge-Lenz vector. 

Firstly we outline the features of the Kepler problem and then the Lie and Noether 
groups are determined. The constants are calculated in 84 .  The results are then 
generalised to n dimensions. 

2. The Kepler problem in classical mechanics 

The equation governing the motion of a particle in an inverse square force field in E? is 

r + p r / r 3  = o (2) 

where ,U is a constant and r = Irl. Equation (2) may be obtained from an action integral 
formulation with Lagrangian 

9 = ir’ + p / r .  (3) 

Constants of motion are 

E = ir2 - p / r ,  

L = r x r ,  R = i. x L - pr /  r. 

E is the total energy, L is the angular momentum and R is known as the Runge-Lenz 
vector. Collinson (1973) develops the details of the motion from (3), (4), (5) rather 
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succinctly, as follows. L * r = 0 and so the particle moves in a plane perpendicular to L. 
Since R * L = 0 the Runge-Lenz vector lies in the plane of motion. Calling ILI = h, 

(6) 
2 r . R = h  -pr. 

If 8 is the angle between r and R then (6) becomes 

h 2 / p 2  
1 + ( R / ~ )  COS e' r =  (7) 

the equation of a conic with the axis in the direction 8 = 0. The semi-latus rectum 1 and 
eccentricity E of the conic are given by 

1 = h 2 / p ,  (8) 

E = R / p .  (9) 
Collinson also mentions that Hamilton knew about this sort of thing in 1845 well 

before the derivations of Runge and Lenz this century. Briefly, Hamilton had obtained 
a vector 

(10) W = i. - p (i x L) /  h '. 
The Runge-Lenz vector is W x L. The usual equation of the planetary orbit can be 
obtained by taking the vector product with r and choosing 8 to be ~ / 2  minus the angle 
between W and r. 

We see that the geometric and dynamical characteristics of the motion are related as 
follows: 

plane of the orbit - direction of angular momenhm; 
orientation of the orbit - direction of the Runge-Lenz vector in the plane; 
semi-latus rectum - magnitude of angular momentum; 
eccentricity - magnitude of the Runge-Lenz vector. 

With this interpretation the energy does not appear as an independent quantity but is 
given by 

E = ( R 2 - p 2 ) / 2 h 2 .  (11) 

The particular type of conic in a given problem may be determined as E > , =, < 0 as 
usual. 

3. Lie and Noether Groups 

Following the approach in Prince and Eliezer (1980), we consider infinitesimal point 
transformation 

7 = t + 6a [(x, t ) ,  z i = x j + S a q i ( X , t )  (12) 

generated by the operator 

U = [(x, t )  a/at + ~ J x ,  t )  a/axi. 

Induced variations in higher derivatives are displayed in the extended operators 
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where 

k = 1,.  . . , n, (15) 

The finite transformations of the group can be determined by exponentiation of the 

vi ( k )  (~,i,. . . , x (k)  , t)GdvIk-’)/dt-X:jk) d[/dt, 

d /dt  being the total time derivative. 

infinitesimal operators 

(16) 
where CY is the group parameter, or by integration of the system of differential equations 

a U  i = emUt, ai = e  xi, 

with initial conditions 

7 = t, a, = X I  when CY = 0. 

The Lagrangian being determined by the equation of motion only up to a total 
derivative, the invariance of the action function 2 dt  under (12) requires that [ , v  and 
an additional function f (x, t )  satisfy 

U ’ 2  + (2 -f = 0 (18) 

where U’ is the first extension of U given by (14). 
For each such t, v,  f there is an associated constant of motion 

J = (til - v l )  a2 /ax ,  - g+f. (19) 

The Lie method considers invariance of equations of motion of the form 

i i  + gi(x,  x, t )  = 0 (20) 

U”(ij + gi) = 0.  (21) 

r = x i  + yj+Ok, (22) 

under point transformations (12). The condition for such invariance is 

For the Kepler problem we will consider the motion to be in the xy plane so that 

and 

Using the Lagrangian (3) in (18) and equating coefficients of powers of x and y to zero, 
we obtain 

a i  -+--0, 
a y  ax 
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These are readily solved to yield 

e = constant, 77 = -Y ,  5 = x ,  f = constant, (28) 
which leads to the two independent generators 

XI = a/at, x, = x a/ay - y a/ax, 

of point transformations leaving the action integral invariant. 

extensions of both (23) and (24) and also by the second extension of the operator 
Using the equation of motion (2) with (22), we find that (21) is satisfied by the second 

This last operator does not satisfy the Noether requirement (18) that U ’ S +  g% be a 

The Lie algebra associated with these three operators is given by the commutators 
total time derivative. 

[Xz, x3l= 0. (34) 

The Noether operators form a two-parameter abelian subgroup of the three-parameter 
Lie symmetry group. 

Using the relations 

[Xi, xj I = c f ~ / o  (35) 

(36) 

we see that the only non-zero structure constants Ct are 
1 Ct3 = 1 = -c31. 

The metric tensor of the algebra 
gi. = C;Ck 

I m  

is just 

(37) 

The algebra is non-semi-simple and is a semi-direct sum of the solvable subaigebra 
{XI, X3} and the (trivially) simple subalgebra {X2}. 

4. Constants of motion 

Using (9) for each of (29) and (30), Noether’s theorem yields respectively 

(39) 

5 2  = x j l -  y i ,  (40) 

J 
1 - 2r + d r ,  

the only non-zero component of angular momentum. 
The method developed in Prince (1979) allows construction of constants associated 

with each element of the Lie group. In the case of the first two it produces (39) and (40) 
above. We outline the procedure for X3. 
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Invariant functions of the extended group generated by X i  are found by integrating 

dt  dx dy dx d$ _-_-_-  
- 2  --=- -?x 1 -$y ’  t -sx 3 y  

yielding 

UI(X, t )  = X3/t2, UZ(Y, t )  = Y 3 / t 2  

and 

UI(X, 1, t )  = tX3, VdY, $7 t )  = t j 3 .  (43) 

For the second extended group generated by X $  two further invariants are available, for 
example 

and 

The most general pair of simultaneous second-order ordinary differential equations 
invariant under X $  is thus 

dvi ldui  = ~ I ( U I ,  UZ, V I ,  UZ), 

dvz/dUz = 4z(u1 ,  u2, VI, ~ 2 1 ,  

(46) 

(47) 

where 41, 4~~ are arbitrary functions of their arguments. 
Now we know that for motion in the xy plane the equations (2) must be expressible 

in the above form (using (42) and (45)) since (21) is satisfied. In fact (46) and (47) show 
how (2) may be reduced to a pair of first-order equations. These can then be integrated 
to give 

W1(ul, UZ, VI, uz )  = constant, 

W2(u1, uz, v l ,  v z )  =constant. 

(48) 

(49) 

Actual calculations are somewhat tedious and are displayed in the Appendix, the result 
being that (48) and (49) are 

x j 2  - y i q  - px/r = constant, (50) 

( 5  1) 2 yx -xi$ - py/r = constant, 

after (42) and (43) have been utilised. These are just the x and y components of the 
Runge-Lenz vector for motion in the xy plane. 

Thus the X 3  operator of the Lie group yields the Runge-Lenz vector, while energy 
and angular momentum are obtained from operators in both Noether and Lie groups. 

The whole problem may be treated in polar coordinates, whence the equation of 
motion (2) in component form is 
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Noether group operators are 

Yl = X I  = alat, 

y2 = alae. 

Y3 = t alat + r a lar .  
The Lie approach provides the additional operator 

(54) 

( 5 5 )  

Constants of motion are again available via the methods used in the Cartesian case. They 
are, for Y l ,  Y2, Y3 respectively, 

K~ = J~ = $i2 + p / r ,  

K3 = Le, + ( r e  - pL/r9)eg. 

(57) 

( 5 8 )  

(59) 

K2 = J2 = r28, 

(59) is just Hamilton’s vector (10). 

5. Transformation of solutions 

The finite transformations generated by (29), (30) and (3 1) can be calculated from (16) 
or (17) and are respectively 

f = t + a 1 ,  .f = x, Y = Y ,  (60) 

f = t ea’, 2 = x  e2/3a3 7 j j  = e2/3%, (62) 

f = t, 2 = x cos a2 - y sin a2,  j j  = x sin a2  + y cos a2,  (6 1) 

Now each of these sets of finite transformations takes a solution of (2) into another 
solution. The way this is accomplished in each case is illuminated by considering the 
transformation properties of the first integrals, keeping in mind the correspondence 
with the geometric characteristics of the solutions outlined in § 2. 

We remark that if Ji is the constant of motion associated with an operator Xi then 
XiJj  = 0 (no sum). This is a direct consequence of the means by which the constant was 
obtained (Prince 1979). As Xi  transforms solutions into solutions J ,  is unchanged. This 
means that 

For XI, 
= Ji under the finite transformation generating Xi.  

l? = E, L = L ,  R = R .  (63) 

Indeed, it is evident from (60) that a solution r of (2) is transformed into a geometrically 
identical solution r’l on which the particle was started off a time a1 later that the particle 
on I?. The orbits differ only in their initial conditions. 

For X 2 ,  

l? = E, E =  L, R = R ,  e =  e+a2,  (64) 
where 8 is the angle between r and R. The transformed orbit rz has the same intrinsic 
geometry as I?, but the axis of the conic has been rotated through an angle a2. Again the 
orbits differ only in their initial conditions. 

For X 3 ,  

E = E e-2/3p3 , 6 = h e1/3a3, L=f, R = R .  (65) 
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The transformed orbit r3 does not have the same intrinsic geometry as r. The 
eccentricity remains the same but the semi-latus rectum has changed. I= 1 using 
(8). The way in which the orbit is oriented in E 3  remains the same, however, so the 
transformations associated with the Runge-Lenz vector are not connected with initial 
conditions in the same way as those for the energy and angular momentum. The 
Runge-Lenz vector is a ‘hidden symmetry’ in this sense. 

It is interesting to note that on elliptic orbits one finds that the period and 
semi-major axes transform as 

(66)  P = P e”, 5 = a e2/3a3 

and that P2/a3 is an invariant of the transformation (62) .  It is reassuring to know that 
the solutions related through (62)  do not violate Kepler’s third law. 

6. The n-dimensional case 

The results obtained in the previous sections are easily extended to the case of the 
equation of motion 

xi + p x i / r 3  = 0 ,  (67)  

where r2  = x k x k .  Energy and angular momentum are generalised to 

Ikeda and Maekawa (1970) generalised the Runge-Lenz vector in the following way. In 
three dimensions the Cartesian components of R are given by 

Ri = &iklikL[ - / . ,LX,/r 

= &ikn&lmnikxlxm - / 1 X i / r  ( i ,  j ,  . . . = 1, 2,  3 ) .  (70) 

Expanding this in terms of the Kronecker delta, 

Ri = ;(28il6k, - 8im8kl - 8iksml)ikXlim - p X i / r .  (71) 

If we let the indices run from 1 to n, (71)  may be considered the n-dimensional form of 
the Runge-Lenz vector. 

Expressions (68)’ (69)’ (71)  are all constants of the motion. The Lie method 
produces the following generators: 

It can be shown that (72) ,  (73)  and (74) produce (68) ,  (69)  and (71) respectively by the 
methods used earlier. It is somewhat easier to verify this: 

lJ;E = 0 ,  Ui’Lkl = 0 ,  U;Ri = 0.  (75) 
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The structure of the Lie algebra is straightforward: 

[U,, U,]= u1, [U,, U;’]= 0, [U;’, U31 = 0, (76) 

[U;, U,”’] = -8,kUi + 8,luf + 8,kui -8,[uik. (77) 

Some points regarding the angular momentum subgroup SO(n)  were made by Prince 
and Eliezer (1980). 

Appendix 

Determination of the two components of the Runge-Lenze vector is facilitated by using 

U1 = Xt-2/3, U2 = y P 3 ,  (All  

v1 = XP3, V2=yt  , (-42) 

and in place of dul/dul,  du2/du2 the three derivatives dU2ldU1, dVlldU1, d V z / d U ~ .  
Direct calculation yields 

. 1 / 3  

where 

p = (U: + u;)1/2 = rt-2’3, 

W1(U1, ~ 2 ,  v i ,  v2)= ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ - P ~ ~ / ~ = c o n s t a n t ,  

w~(u , ,  ~ 2 ,  v l ,  v2)= ~ ~ ~ : - ~ ~ ~ ~ ~ ~ - p ~ ~ / ~ = c o n s t a n t ,  

(A6) 

(-47) 

(‘48) 

Solutions of (A3), (A4) and (A5) are 

as may be seen by verifying that 

and similarly for W2. Use of (Al)  and (A2) in (A7) and (A8) yields (51) and (52). 

Acknowledgment 

The authors wish to thank Dr P G L Leach for many helpful discussions. One of the 
authors (GP) is grateful for the award of a La Trobe University Research Scholarship. 

References 
Anderson R L and Davison S M 1974 J. Math. Anal.  Applic.  48 301 
Bluman G W and Cole J D 1974 Similarity Methods for Differential Equations (New York: Springer) 



G E Prince and C J Eliezer 

Cisneros A and McIntosh H V 1970 J. Math. Phys. 11 870 
Cohen A 1911 A n  introduction to the Lie Theory of One-Parameter Groups (New York: Stechert) (reprint 

Collinson C D 1973 Bull. Inst. Math. Applic. 9 377 
Dickson L E 1924 Ann. Math. 25 287 
Gonzalez-Gascon F 1977 J. Math. Phys. 18 1763 
Hill E L 1951 Rev. Mod. Phys. 23 253 
Ikeda M and Maekawa T 1970 Math. Japon. 15 57 
Ince E L 1926 Ordinary Differential Equations (New York: Dover) (reprint 1956) 
LCvy-Leblond .I-M 1971 Am.  J. Phys. 39 502 
Lie S 1891 Vorlesungen uber Differentialgleichunger ed. G Scheffers (Leipzig: Teubner) 
- 1922 Gesem. Abh. dt. Lederinst ed. F Engle and P Heegaard (Leipzig: Teubner) 
Lutzky M 1978 J. Phys. A :  Math. Gen. 11 249 
Page J A 1897 Ordinary Differential Equations (London: Macmillan) 
Prince G E 1979 Department of Applied Mathematics, Research Report La Trobe University, Melbourne 
Prince G E and Eliezer C J 1980 J. Phys. A :  Math. Gen. 13 815 
Wulfman C E and Wybourne B G 1976 J. Phys. A :  Math. Gen. 9 507 

1931) 


